
QUEUES

OVERVIEW

OVERVIEW

▪ What is a queue?

CSCE 2014 - Programming Foundations II 2

Queue at bus stop Queue data structure

OVERVIEW

▪ With a queue data structure we insert data at the “back” of

the queue and remove from the “front” of the queue

▪ Think of a line of people waiting for a bus

▪ People get in line based on their arrival time

▪ New arrivals go to back of line and wait their turn

▪ People at front of the line enter bus first

▪ This pattern of data usage has two names:

▪ FIFO - first in, first out

▪ LILO – last in, last out

CSCE 2014 - Programming Foundations II 3

OVERVIEW

▪ A wide range of programming problems can be solved

using a queue data structure

▪ Queues can be used to simulate human behavior (bus

stops, gas stations, banks, ticket sales, etc.)

▪ Queues can also be used to provide fair service (print

queues, process queues, communication buffers, etc.)

▪ Finally, queues can be used in string processing, polygon

filling, and breadth first search applications

▪ Queues can be implemented using fixed length arrays or

using linked lists

▪ Arrays are faster, but linked lists can never become full

CSCE 2014 - Programming Foundations II 4

QUEUES

QUEUE INTERFACE

QUEUE INTERFACE

▪ The queue ADT has the following operations:

▪ Create – Initialize queue data structure

▪ Destroy – Delete queue data structure

▪ Insert – Insert data at the end of queue

▪ Remove – Remove data at the front of queue

▪ IsFull – Check if the queue is at max capacity

▪ IsEmpty – Check if the queue is has no data

▪ The type of data stored in the queue varies by application

▪ Character – string processing

▪ Integer – polygon flood fill

▪ Object – simulation or scheduling information

CSCE 2014 - Programming Foundations II 6

QUEUE INTERFACE

class Queue

{

public:

// Constructors

Queue();

Queue(const Queue& queue);

~Queue();

// Basic methods

void Insert(const int number);

void Remove(int & number);

CSCE 2014 - Programming Foundations II 7

QUEUE INTERFACE

...

// Other methods

int GetCount();

int GetFront();

bool IsFull();

bool IsEmpty();

void Print();

private:

// To be added

};

CSCE 2014 - Programming Foundations II 8

QUEUES

QUEUE IMPLEMENTATION

ARRAY BASED

▪ We create an empty queue using an array with size = 10

and a variable count = 0 to store the number of items

▪ When we insert a value 3 on the queue, store the data at

array[count] and we increment count

CSCE 2014 - Programming Foundations II 10

- - - - - - - - - -

0 1 2 3 4 5 6 7 8 9

3 - - - - - - - - -

0 1 2 3 4 5 6 7 8 9

count = 0

count = 1

ARRAY BASED

▪ As we insert more data into the queue, the array fills in

from left to right and count increases

CSCE 2014 - Programming Foundations II 11

3 1 4 1 - - - - - -

0 1 2 3 4 5 6 7 8 9

3 1 4 1 5 - - - - -

0 1 2 3 4 5 6 7 8 9

3 1 4 1 5 9 - - - -

0 1 2 3 4 5 6 7 8 9

insert 1, count = 4

insert 5, count = 5

insert 9, count = 6

ARRAY BASED

▪ When we remove a value from the front of the queue, we

shift data left in the array and decrement count by one

CSCE 2014 - Programming Foundations II 12

3 1 4 1 5 9 - - - -

0 1 2 3 4 5 6 7 8 9

1 4 1 5 9 - - - - -

0 1 2 3 4 5 6 7 8 9

4 1 5 9 - - - - - -

0 1 2 3 4 5 6 7 8 9

remove 3, count = 5

remove 1, count = 4

count = 6

ARRAY BASED

▪ A queue is full when count = size

▪ A queue is empty when count = 0

CSCE 2014 - Programming Foundations II 13

3 1 4 1 5 9 2 6 5 3

0 1 2 3 4 5 6 7 8 9

- - - - - - - - - -

0 1 2 3 4 5 6 7 8 9

ARRAY BASED

class Queue

{

public:

// Constructors

Queue();

Queue(const Queue& queue);

~Queue();

// Basic methods

void Insert(const int number);

void Remove(int & number);

CSCE 2014 - Programming Foundations II 14

ARRAY BASED

...

// Other methods

int GetCount();

int GetFront();

bool IsFull();

bool IsEmpty();

void Print();

private:

static const int MAX_SIZE = 100;

int data[MAX_SIZE];

int count;

};

CSCE 2014 - Programming Foundations II 15

ARRAY BASED

// Constructor function

Queue::Queue ()

{

for (int index=0; index<MAX_SIZE; index++)

data[index] = 0;

count = 0;

}

CSCE 2014 - Programming Foundations II 16

ARRAY BASED

// Copy constructor

Queue::Queue (const Queue & queue)

{

for (int index=0; index<MAX_SIZE; index++)

data[index] = queue.data[index];

count = queue.count;

}

CSCE 2014 - Programming Foundations II 17

ARRAY BASED

// Destructor function

Queue::~Queue()

{

// Empty

}

CSCE 2014 - Programming Foundations II 18

ARRAY BASED

// Insert method

void Queue::Insert(const int number)

{

// Check for full queue

if (IsFull())

return;

// Save data in queue

data[count++] = number;

}

CSCE 2014 - Programming Foundations II 19

This method ignores insert if

the queue is already full

This increments count after

using its value to access array

ARRAY BASED

// Insert method

void Queue::Insert(const int number)

{

// Check for full queue

if (IsFull())

return;

// Save data in queue

data[count] = number;

count++;

}

CSCE 2014 - Programming Foundations II 20

This method ignores insert if

the queue is already full

This increments count after

using its value to access array

ARRAY BASED

// Remove method

void Queue::Remove(int & number)

{

// Check for empty queue

if (IsEmpty()) return;

// Remove front value from queue

number = data[0];

count--;

for (int i = 0; i < count; i++)

data[i] = data[i + 1];

}

CSCE 2014 - Programming Foundations II 21

This method returns if

the queue is empty

Shifting data in array is

simple but very slow

ARRAY BASED

// GetLength method

int Queue::GetCount()

{

return count;

}

// GetFront method

int Queue::GetFront()

{

return data[0];

}

CSCE 2014 - Programming Foundations II 22

ARRAY BASED

// True if queue is full

bool Queue::IsFull()

{

return (count == MAX_SIZE);

}

// True if queue is empty

bool Queue::IsEmpty()

{

return (count == 0);

}

CSCE 2014 - Programming Foundations II 23

ARRAY BASED

// Print method

void Queue::Print()

{

cout << ”queue: ";

for (int index=0; index<count; index++)

cout << data[index] << ' ';

cout << endl;

}

CSCE 2014 - Programming Foundations II 24

CIRCULAR QUEUE

• Moving data in the array after every remove operation is

too slow for practical applications

• The solution is to create a circular queue by “bending” an

array back onto itself

CSCE 2014 - Programming Foundations II 25

5

4 3

0

1

2

6

7

CIRCULAR QUEUE

• Use two integer variables keep track of the locations of

front and end of the queue

• After inserting 6 values we would have the following

CSCE 2014 - Programming Foundations II 26

5

4 3

0

1

2

6

7
front=0

end=5

CIRCULAR QUEUE

• Update values of front and end as we insert and remove

• Insert: end = (end + 1) % SIZE

• Remove: front = (front + 1) % SIZE

CSCE 2014 - Programming Foundations II 27

5

4 3

0

1

2

6

7

front=2

after 2

removes

end=6

after 1

insert

CIRCULAR QUEUE

• Array front and end locations will wrap around when they

reach the end of the array

• Queue is full if ((end + 1) % SIZE == front)

• Or when count == SIZE

CSCE 2014 - Programming Foundations II 28

5

4 3

0

1

2

6

7

front=2

after 2

removes

end=0

after 2

inserts

CIRCULAR QUEUE

• Example:

CSCE 2014 - Programming Foundations II 29

3 1 4 1 5 9 - - - -

0 1 2 3 4 5 6 7 8 9

- - 4 1 5 9 - - - -

0 1 2 3 4 5 6 7 8 9

- - 4 1 5 9 2 6 - -

0 1 2 3 4 5 6 7 8 9

After 2 removes

front=2, end=5,

count=4

Initial queue

front=0, end=5,

count=6

After 2 inserts

front=2, end=7,

count=6

CIRCULAR QUEUE

• Example:

CSCE 2014 - Programming Foundations II 30

- - 4 1 5 9 2 6 5 3

0 1 2 3 4 5 6 7 8 9

5 - 4 1 5 9 2 6 5 3

0 1 2 3 4 5 6 7 8 9

5 - - - - 9 2 6 5 3

0 1 2 3 4 5 6 7 8 9

After 1 insert

front=2, end=0,

count=9

After 2 inserts

front=2, end=9,

count=8

After 3 removes

front=5, end=0,

count=6

CIRCULAR QUEUE

// Insert method

void Queue::Insert(const int number)

{

// Check for full queue

if (IsFull()) return;

// Save data in queue

end = (end + 1) % SIZE;

data[end] = number;

count++;

}

CSCE 2014 - Programming Foundations II 31

This method ignores insert if

the queue is already full

This updates the end location

and then stores the data

CIRCULAR QUEUE

// Remove method

void Queue::Remove(int & number)

{

// Check for empty queue

if (IsEmpty()) return;

// Remove front value from queue

number = data[front];

front = (front + 1) % SIZE;

count--;

}

CSCE 2014 - Programming Foundations II 32

This method returns if

the queue is empty

This removes the data and

then updates front location

LINKED LIST BASED

▪ We create an empty queue by creating an empty linked list

▪ When we insert values on the queue we insert new nodes

at the tail of the linked list

CSCE 2014 - Programming Foundations II 33

head

Insert 3

Insert 1

Insert 4

3head

3head 1

3head 1 4

LINKED LIST BASED

▪ When we remove values from the queue we delete nodes

from the head of the linked list

CSCE 2014 - Programming Foundations II 34

4head

1head 4 Remove 3

Remove 1

Remove 4

3head 1 4

head

LINKED LIST BASED

▪ To get the front of the queue, we return the first value in

the linked list, without removing it from the list

▪ A linked list queue can not become full unless our

program runs out of memory on the heap

▪ A linked list queue is empty when the head pointer is null

CSCE 2014 - Programming Foundations II 35

1head 3 Front 1

LINKED LIST BASED

class Queue

{

public:

// Constructors

Queue();

Queue(const Queue& queue);

~Queue();

// Basic methods

void Insert(const int number);

void Remove(int & number);

CSCE 2014 - Programming Foundations II 36

LINKED LIST BASED

...

// Other methods

int GetCount();

int GetFront();

bool IsFull();

bool IsEmpty();

void Print();

private:

QueueNode *head;

QueueNode *tail;

};

CSCE 2014 - Programming Foundations II 37

LINKED LIST BASED

Class QueueNode

{

public:

int Number;

QueueNode *Next;

};

CSCE 2014 - Programming Foundations II 38

This class “breaks” the information

hiding principle of OOP, but we are

only going to use it in the Queue class

LINKED LIST BASED

Queue::Queue ()

{

head = NULL;

tail = NULL;

}

CSCE 2014 - Programming Foundations II 39

LINKED LIST BASED

Queue::Queue(const Queue & queue)

{

// Create first node

QueueNode *copy = new QueueNode();

Head = copy;

// Walk list to copy nodes

QueueNode *ptr = queue.Head;

CSCE 2014 - Programming Foundations II 40

LINKED LIST BASED

while (ptr != NULL)

{

copy->Next = new QueueNode();

copy = copy->Next;

copy->Number = ptr->Number;

copy->Next = NULL;

Tail = copy;

ptr = ptr->Next;

}

// Tidy first node

copy = Head;

Head = copy->Next;

delete copy;

}
CSCE 2014 - Programming Foundations II 41

LINKED LIST BASED

Queue::~Queue()

{

// Delete nodes from queue

while (Head != NULL)

{

QueueNode *Temp = Head;

Head = Head->Next;

delete Temp;

}

Head = NULL;

Tail = NULL;

}

CSCE 2014 - Programming Foundations II 42

LINKED LIST BASED

void Queue::Insert(const int Number)

{

// Allocate space for data

QueueNode *Temp = new QueueNode;

if (Temp == NULL) return;

Temp->Number = Number;

Temp->Next = NULL;

// Insert data at tail of list

if (IsEmpty()) Head = Temp;

else Tail->Next = Temp;

Tail = Temp;

}

CSCE 2014 - Programming Foundations II 43

This ignores insert

operation if we run

out of memory

We insert node at the

tail of linked list

LINKED LIST BASED

void Queue::Remove(int & Number)

{

// Extract information from node

if (IsEmpty()) return;

int Number = Head->Number;

// Delete first node from linked list

QueueNode *Temp = Head;

Head = Head->Next;

if (IsEmpty())

Tail = NULL;

delete Temp;

}

CSCE 2014 - Programming Foundations II 44

This returns 0 is

queue is empty

We delete node after

updating pointers

LINKED LIST BASED

int Queue::GetFront()

{

// Extract information from node

if (IsEmpty()) return 0;

int Number = Head->Number;

// Return front value

return Number;

}

CSCE 2014 - Programming Foundations II 45

This returns 0 is

queue is empty

LINKED LIST BASED

// True if queue is full

bool Queue::IsFull()

{

return false;

}

// True if queue is empty

bool Queue::IsEmpty()

{

return (Head == NULL);

}

CSCE 2014 - Programming Foundations II 46

LINKED LIST BASED

void Queue::Print()

{

cout << ”queue: ";

QueueNode *Temp = Head;

while (Temp != NULL)

{

cout << Temp->Number << " ";

Temp = Temp->Next;

}

cout << endl;

}

CSCE 2014 - Programming Foundations II 47

QUEUES

APPLICATION:

POLYGON FLOOD FILL

POLYGON FLOOD FILL

▪ Flood fill is an algorithm used in most paint packages to

fill in the interior of a line drawing

▪ User draws the object outline

▪ User selects a seed point inside the object

▪ User selects the desired color

▪ Algorithm simulates “flooding” to fill region

CSCE 2014 - Programming Foundations II 49

Queue based flood fill

demo from Wikipedia

POLYGON FLOOD FILL

▪ Flood fill can be implemented recursively as follows:

▪ We start at seed location (x,y) in picture

▪ If pixel(x,y) is not already colored, we color this pixel and

make four recursive calls to fill in adjacent locations

floodfill(x+1, y);

floodfill(x-1, y);

floodfill(x, y+1);

floodfill(x, y-1);

▪ Recursion terminates if the pixel is already colored (or if

the location is outside the boundary of the image)

▪ If the flood fill region is large, this could result in millions of

recursive calls and crash the program

CSCE 2014 - Programming Foundations II 50

POLYGON FLOOD FILL

void floodfill(int picture[SIZE][SIZE],

int x, int y, int value)

{

// Check terminating condition

if ((x >= 0) && (x < SIZE) &&

(y >= 0) && (y < SIZE) &&

(picture[y][x] != value))

{

// Paint this pixel

picture[y][x] = value;

CSCE 2014 - Programming Foundations II 51

Checking we are

inside array bounds

before checking pixel

POLYGON FLOOD FILL

...

// Visit four neighbors

floodfill(picture, x+1, y, value);

floodfill(picture, x-1, y, value);

floodfill(picture, x, y+1, value);

floodfill(picture, x, y-1, value);

}

}

CSCE 2014 - Programming Foundations II 52

Four recursive calls to visit

the four adjacent locations

POLYGON FLOOD FILL

▪ Flood fill can also be implemented using a queue:

▪ We start by inserting the seed location (x,y) on queue

▪ We loop until the queue is empty

▪ We remove(x,y) location of current point

▪ If pixel(x,y) is not already colored, we color this pixel and

save adjacent locations on queue

insert(x+1, y);

insert(x-1, y);

insert(x, y+1);

insert(x, y-1);

▪ We stop filling when the queue is empty

▪ This method is faster and safer than recursive flood fill

CSCE 2014 - Programming Foundations II 53

POLYGON FLOOD FILL

void floodfill(int picture[SIZE][SIZE],

int startx, int starty, int value)

{

// Push start point on queue

Queue q;

q.Insert(startx); q.Insert(starty);

// Loop while queue not empty

while (!q.IsEmpty())

{

CSCE 2014 - Programming Foundations II 54

We insert two values

for (x,y) location

POLYGON FLOOD FILL

// Remove next point from queue

int x = 0;

int y = 0;

q.Remove(x); q.Remove(y);

// Check if pixel is painted

if ((x >= 0) && (x < SIZE) &&

(y >= 0) && (y < SIZE) &&

(picture[y][x] != value))

{

CSCE 2014 - Programming Foundations II 55

We remove two values to

get next (x,y) location

Checking we are

inside array bounds

before checking pixel

POLYGON FLOOD FILL

// Paint this pixel

picture[y][x] = value;

// Insert four neighbors

q.Insert(x+1); q.Insert(y);

q.Insert(x-1); q.Insert(y);

q.Insert(x); q.Insert(y+1);

q.Insert(x); q.Insert(y-1);

}

}

}

CSCE 2014 - Programming Foundations II 56

We insert two values

for each of the four

(x,y) locations

POLYGON FLOOD FILL

▪ We showed how flood fill can be implemented using

recursion or using a queue to store pixel locations

▪ In the recursive floodfill code we visited the four adjacent

(x,y) locations in RLTB order

▪ In the queue based floodfill code we remove the points in

FIFO order so the fill looks more like paint spreading out

▪ We could reduce the queue size by checking if each (x,y)

location is in bounds and colored before pushing

▪ This is a classic space-time tradeoff

▪ See full solution on class website

CSCE 2014 - Programming Foundations II 57

QUEUES

APPLICATION:

DISCRETE EVENT SIMULATION

DISCRETE EVENT

SIMULATION

▪ Queues can be used to model activities where a customer

waits in line for service

▪ Bank teller windows

▪ Supermarket checkouts

▪ Gas station pumps

▪ Amusement park rides

▪ We store customer information in a queue when they

arrive and remove them when they get service

▪ We can modify simulation to maximize throughput or

minimize the number of customers who “give up”

CSCE 2014 - Programming Foundations II 59

DISCRETE EVENT

SIMULATION

▪ Simulation setup

▪ Decide how many queues and servers to use

CSCE 2014 - Programming Foundations II 60

DISCRETE EVENT

SIMULATION

▪ Simulation setup

▪ Create models for customer arrivals and service time

▪ Use a uniform or normal distribution of times between

customer arrivals and times to serve each customer

CSCE 2014 - Programming Foundations II 61

• Specify the min and max delay time

between customers in seconds

• delay = min+random() % (max-min+1)

• Specify the mean and standard

deviation of delay time distribution

• Use methods in <random> to

generate delay values

DISCRETE EVENT

SIMULATION

▪ Simulation algorithm

▪ Create N empty queues

▪ Start virtual clock at zero

▪ Loop for C customers (or until time T is reached)

▪ Calculate arrival time for next customer

▪ Calculate service time for this customer

▪ Update the virtual clock

▪ Check all queues and remove serviced customers

▪ Add new customer to the shortest queue

▪ We can calculate min/max/ave customer waiting time

▪ We can simulate customers “giving up” if queue is too long

▪ We can test several models to improve customer service

CSCE 2014 - Programming Foundations II 62

QUEUES

APPLICATION:

FAIR SCHEDULING

FAIR SCHEDULING

▪ Queues are used in a number of software applications to

provide fair service

▪ Queues store information in first in first out (FIFO) order so

they are ideal for “first come first served” applications

▪ Printer queues:

▪ Network printer provides shared service to many users

▪ Print requests are added to the end of printer queue

▪ Printer removes documents from the printer queue and

prints them in FIFO order

CSCE 2014 - Programming Foundations II 64

FAIR SCHEDULING

▪ Communication buffers:

▪ Hub or switch stores incoming data packets in a queue

▪ Packets are processed and transmitted in FIFO order

▪ Queue prevents data loss if there is temporary congestion

▪ Process scheduling on CPU:

▪ Scheduling queue keeps track of all running tasks on OS

▪ Scheduler will remove task at front of scheduling queue

▪ This task gets a small “time slice” of the CPU

▪ When time slice is up, the task is “paused” and added to
the end of the schedule queue

▪ Tasks are removed from queue when they terminate

CSCE 2014 - Programming Foundations II 65

FAIR SCHEDULING

CSCE 2014 - Programming Foundations II 66

FAIR SCHEDULING

CSCE 2014 - Programming Foundations II 67

QUEUES

SUMMARY

SUMMARY

▪ Queues are a very simple abstract data type that store

data in a first in first out (FIFO) order

▪ We can only store data using insert

▪ We can only access data using remove

▪ Queues can be implemented using arrays or linked lists

▪ Array implementation is much faster but can get full

▪ Linked list implementation can never get full but is slower

▪ Queues can be used to solve wide range of problems

▪ Polygon flood fill, discrete event simulation, fair scheduling

CSCE 2014 - Programming Foundations II 69

	Slide 1: queues
	Slide 2: OVERVIEW
	Slide 3: OVERVIEW
	Slide 4: OVERVIEW
	Slide 5: queues
	Slide 6: queue interface
	Slide 7: queue interface
	Slide 8: queue interface
	Slide 9: queues
	Slide 10: Array based
	Slide 11: Array based
	Slide 12: Array based
	Slide 13: Array based
	Slide 14: Array based
	Slide 15: Array based
	Slide 16: Array based
	Slide 17: Array based
	Slide 18: Array based
	Slide 19: Array based
	Slide 20: Array based
	Slide 21: Array based
	Slide 22: Array based
	Slide 23: Array based
	Slide 24: Array based
	Slide 25: Circular queue
	Slide 26: Circular queue
	Slide 27: Circular queue
	Slide 28: Circular queue
	Slide 29: Circular queue
	Slide 30: Circular queue
	Slide 31: Circular queue
	Slide 32: Circular queue
	Slide 33: Linked list based
	Slide 34: Linked list based
	Slide 35: Linked list based
	Slide 36: Linked list based
	Slide 37: Linked list based
	Slide 38: Linked list based
	Slide 39: Linked list based
	Slide 40: Linked list based
	Slide 41: Linked list based
	Slide 42: Linked list based
	Slide 43: Linked list based
	Slide 44: Linked list based
	Slide 45: Linked list based
	Slide 46: Linked list based
	Slide 47: Linked list based
	Slide 48: queues
	Slide 49: Polygon flood fill
	Slide 50: Polygon flood fill
	Slide 51: Polygon flood fill
	Slide 52: Polygon flood fill
	Slide 53: Polygon flood fill
	Slide 54: Polygon flood fill
	Slide 55: Polygon flood fill
	Slide 56: Polygon flood fill
	Slide 57: Polygon flood fill
	Slide 58: queues
	Slide 59: Discrete event simulation
	Slide 60: Discrete event simulation
	Slide 61: Discrete event simulation
	Slide 62: Discrete event simulation
	Slide 63: queues
	Slide 64: Fair scheduling
	Slide 65: Fair scheduling
	Slide 66: Fair scheduling
	Slide 67: Fair scheduling
	Slide 68: queues
	Slide 69: summary

