QUEUES

OVERVIEW

OVERVIEW

= Whatis aqueue?

Back Front

Dequeue
Enqueue

Queue at bus stop Queue data structure

CSCE 2014 - Programming Foundations I

OVERVIEW

= With a queue data structure we insert data at the “back” of
the queue and remove from the “front” of the queue

= Think of aline of people waiting for a bus

= People get in line based on their arrival time
= New arrivals go to back of line and wait their turn
= People at front of the line enter bus first

= This pattern of data usage has two names:

= FIFO - first in, first out
= LILO —lastin, last out

CSCE 2014 - Programming Foundations Il 3

OVERVIEW

= A widerange of programming problems can be solved
using a queue data structure

= Queues can be used to simulate human behavior (bus
stops, gas stations, banks, ticket sales, etc.)

= Queues can also be used to provide fair service (print
gueues, process queues, communication buffers, etc.)

= Finally, queues can be used in string processing, polygon
filling, and breadth first search applications

» Queues can be implemented using fixed length arrays or
using linked lists

= Arrays are faster, but linked lists can never become full

CSCE 2014 - Programming Foundations Il 4

QUEUES

QUEUE INTERFACE

QUEUE INTERFACE

= The queue ADT has the following operations:

= Create — Initialize queue data structure

= Destroy — Delete queue data structure

= Insert — Insert data at the end of queue

= Remove — Remove data at the front of queue
= |sFull — Check if the queue is at max capacity
= IsEmpty — Check if the queue is has no data

» The type of data stored in the queue varies by application

= Character — string processing
= Integer — polygon flood fill
= QObject — simulation or scheduling information

CSCE 2014 - Programming Foundations Il 6

QUEUE INTERFACE

class Queue
{
public:
// Constructors
Queue () ;
Queue (const Queueé& queue) ;

~Queue () ;
// Basic methods

void Insert(const int number) ;

void Remove (int & number) ;

CSCE 2014 - Programming Foundations Il

QUEUE INTERFACE

// Other methods
int GetCount() ;
int GetFront() ;
bool IsFull();
bool IsEmpty () ;

void Print () ;

private:
// To be added

};

CSCE 2014 - Programming Foundations Il

QUEUES

QUEUE IMPLEMENTATION

ARRAY BASED

= We create an empty queue using an array with size = 10
and a variable count = 0 to store the number of items

count=0

= When we insert avalue 3 on the queue, store the data at
array[count] and we increment count

< 7 L L L T i i R count=1

CSCE 2014 - Programming Foundations Il

10

ARRAY BASED

= As weinsert more data into the queue, the array fills in
from left to right and count increases

311141 - - - - - - Insert 1, count = 4

o 1 2 3 4 5 6 7 8 9

3(1/4|1]|5]| - - - - - insert 5, count =5

3 /14| 1|5]|] 9| - - - - insert 9, count = 6

CSCE 2014 - Programming Foundations Il 11

ARRAY BASED

» When we remove a value from the front of the queue, we
shift data left in the array and decrement count by one

3114|159 -] -1|-/]- count==6

o 1 2 3 4 5 6 7 8 9

1141|5109 - - - - - remove 3, count =5

4 |15 |09 - - - - - - remove 1, count =4

CSCE 2014 - Programming Foundations I 12

ARRAY BASED

= A queueis full when count = size

= A queueis empty when count=0

CSCE 2014 - Programming Foundations I 13

ARRAY BASED

class Queue

{
public:
// Constructors
Queue () ;
Queue (const Queueé& queue) ;

~Queue () ;
// Basic methods

void Insert(const int number) ;

void Remove (int & number) ;

CSCE 2014 - Programming Foundations Il 14

ARRAY BASED

// Other methods
int GetCount|() ;
int GetFront() ;
bool IsFull();
bool IsEmpty () ;
void Print () ;

private:
static const int MAX SIZE = 100;

int data[MAX SIZE];
int count;

};

CSCE 2014 - Programming Foundations Il 15

ARRAY BASED

// Constructor function
Queue: :Queue ()
{
for (int index=0; index<MAX SIZE; index++)
data[index] = O0;

count = 0;

CSCE 2014 - Programming Foundations Il 16

ARRAY BASED

// Copy constructor
Queue: :Queue (const Queue & queue)
{
for (int index=0; index<MAX SIZE; index++)
data[index] = queue.data[index];

count = queue.count;

CSCE 2014 - Programming Foundations Il 17

ARRAY BASED

// Destructor function
Queue: : ~Queue ()

{
// Empty

CSCE 2014 - Programming Foundations Il

18

ARRAY BASED

// Insert method
void Queue: :Insert(const int number)

{

// Check for full queue

This method ignores insert if

1f (IsFull
1f (IsFull()) < the queue is already full

return;

// Save data in queue

data[count++] = number;

} \ This increments count after

using its value to access array

CSCE 2014 - Programming Foundations Il 19

ARRAY BASED

// Insert method
void Queue: :Insert (const int number)

{
// Check for full queue

if (IsFull()) This method ignores insert if

— :
return; the queue is already full

// Save data in queue
data[count] = number;

count++;

} \ This increments count after

using its value to access array

CSCE 2014 - Programming Foundations Il 20

ARRAY BASED

// Remove method

void Queue: :Remove (int & number)

{

// Check for empty queue _ _
This method returns if

if (IsEmpty()) return; < the queue is empty

// Remove front value from queue
number = data[0];

count--;

for (int 1 = 0; i < count; i++)

datal[i] Shifting data in array is

simple but very slow

data[i + 1]; 2

CSCE 2014 - Programming Foundations Il 2 1

ARRAY BASED

// GetLength method

int Queue: :GetCount ()

{

return count;

// GetFront method

int Queue: :GetFront ()

{

return data[0];

CSCE 2014 - Programming Foundations Il

22

ARRAY BASED

// True if queue is full
bool Queue: :IsFull ()

{

return (count == MAX SIZE);

// True if queue is empty
bool Queue: :IsEmpty ()

{

return (count == 0);

CSCE 2014 - Programming Foundations Il

23

ARRAY BASED

// Print method
void Queue: :Print ()
{
cout << ”“queue: ";
for (int index=0; index<count; index++)
cout << data[index] << ' ';

cout << endl;

CSCE 2014 - Programming Foundations Il 24

CIRCULAR QUEUE

« Moving data in the array after every remove operation is
too slow for practical applications

« The solution is to create a circular queue by “bending” an
array back onto itself

l/

CSCE 2014 - Programming Foundations Il 25

CIRCULAR QUEUE

« Use two integer variables keep track of the locations of
front and end of the queue

« After inserting 6 values we would have the following

, <—— front=0

end=5 —>

CSCE 2014 - Programming Foundations Il 26

CIRCULAR QUEUE

 Update values of front and end as we insert and remove

* Insert: end = (end + 1) % SIZE
- Remove: front = (front + 1) % SIZE

end=6 ‘
after] ——»
insert

front=2
after 2
removes

CSCE 2014 - Programming Foundations Il 27

CIRCULAR QUEUE

« Array front and end locations will wrap around when they
reach the end of the array

* Queueis fullif ((end + 1) % SIZE == front)
« Orwhen count == SIZE end=0

<«— after 2
, inserts

front=2
after 2
removes

CSCE 2014 - Programming Foundations Il 28

CIRCULAR QUEUE

« Example:

CSCE 2014 - Programming Foundations I

Initial queue
front=0, end=5,
count=6

After 2 removes
front=2, end=5,
count=4

After 2 inserts
front=2, end=7,
count=6

29

CIRCULAR QUEUE

« Example:

CSCE 2014 - Programming Foundations I

After 2 inserts
front=2, end=9,
count=8

After 1 insert
front=2, end=0,
count=9

After 3 removes
front=5, end=0,
count=6

30

CIRCULAR QUEUE

// Insert method

void Queue: :Insert (const int number)

{

// Check for full queue
This method ignores insert if

1f (IsFull t ’ i
if (IsFull()) return; <— the queue is already full

// Save data in queue

end = (end + 1) % SIZE;
This updates the end location

dat d] = mber ;
ata[end] = number <~ and then stores the data

count++;

CSCE 2014 - Programming Foundations Il 3 1

CIRCULAR QUEUE

// Remove method

void Queue: :Remove (int & number)

{

// Check for empty queue
This method returns if

if (IsEmpty()) return; the queue is empty

// Remove front value from queue

number = data[front];
This removes the data and

front = (front + 1) % SIZE; <—— hen updates front location

count--;

CSCE 2014 - Programming Foundations Il 32

LINKED LIST BASED

We create an empty queue by creating an empty linked list

head —

When we insert values on the queue we insert new nodes
at the tail of the linked list

head —> 3 1 Insert 3
head —>{ 3 —> 1 1 Insert 1
head — 3 —> 1 —> 4 1 Insert4

CSCE 2014 - Programming Foundations Il

33

LINKED LIST BASED

* When we remove values from the queue we delete nodes
from the head of the linked list

head — 3 > 1 —> 4 1

head — 1 > 4 -1 Remove 3
head —>{ 4 1 Remove 1
Remove 4

head

CSCE 2014 - Programming Foundations Il 34

LINKED LIST BASED

= To get the front of the queue, we return the first value in
the linked list, without removing it from the list

head — 1 = 3 Front 1

= Alinked list queue can not become full unless our
program runs out of memory on the heap

= Alinked list queue is empty when the head pointer is null

CSCE 2014 - Programming Foundations Il 35

LINKED LIST BASED

class Queue
{
public:
// Constructors
Queue () ;
Queue (const Queueé& queue) ;

~Queue () ;

// Basic methods
void Insert(const int number) ;

void Remove (int & number) ;

CSCE 2014 - Programming Foundations Il 36

LINKED LIST BASED

// Other methods
int GetCount() ;
int GetFront() ;
bool IsFull();
bool IsEmpty () ;

void Print () ;

private:
QueueNode *head;

QueueNode *tail;

CSCE 2014 - Programming Foundations Il

37

LINKED LIST BASED

Class QueueNode

{
public:
int Number;

QueueNode *Next;

};

CSCE 2014 - Programming Foundations Il

This class “breaks” the information
¢ hiding principle of OOP, but we are
only going to use it in the Queue class

38

LINKED LIST BASED

Queue: :Queue ()
{
head = NULL;

tail = NULL;

CSCE 2014 - Programming Foundations I 39

LINKED LIST BASED

Queue: :Queue (const Queue & queue)

{

// Create first node
QueueNode *copy = new QueueNode() ;

Head = copy;

// Walk list to copy nodes

QueueNode *ptr = queue.Head;

CSCE 2014 - Programming Foundations Il 40

LINKED LIST BASED

while (ptr != NULL)

}

{

copy->Next = new QueueNode() ;
copy = copy->Next;
copy->Number = ptr->Number;
copy->Next = NULL;

Tail = copy;

ptr = ptr->Next;

// Tidy first node

copy = Head;

Head = copy->Next;

delete copy;

CSCE 2014 - Programming Foundations Il

41

LINKED LIST BASED

Queue: : ~Queue ()
{
// Delete nodes from queue
while (Head '= NULL)
{
QueueNode *Temp = Head;
Head = Head->Next;
delete Temp;
}
Head = NULL;
Tail

NULL;

CSCE 2014 - Programming Foundations Il

42

LINKED LIST BASED

void Queue: :Insert(const int Number)

{
// Allocate space for data

QueueNode *Temp = new QueueNode;
This ignores insert

operation if we run
Temp->Number = Number; out of memory

if (Temp == NULL) return; <€

Temp->Next = NULL;

// Insert data at tail of list

if (IsEmpty()) Head = Temp;
We insert node at the

else Tail->lext = Tempi <«——— il of linked list

Tail = Temp;
}

CSCE 2014 - Programming Foundations Il 43

LINKED LIST BASED

void Queue: :Remove (int & Number)

{

// Extract information from node _ _
This returns O is

if (IsEmpty()) return; <€ gueue is empty

int Number = Head->Number;

// Delete first node from linked list
QueueNode *Temp = Head;

Head = Head->Next;

if (IsEmpty())

Tail = NULL: < We delete node after

updating pointers

delete Temp;

CSCE 2014 - Programming Foundations Il 44

LINKED LIST BASED

int Queue: :GetFront ()

{
// Extract information from node
if (IsEmpty()) return O;

int Number = Head->Number; <

// Return front value

return Number;

CSCE 2014 - Programming Foundations Il

This returns O is
gueue is empty

45

LINKED LIST BASED

// True if queue is full

bool Queue: :IsFull ()

{

return false;

// True if queue is empty
bool Queue: : IsEmpty ()

{
return (Head == NULL) ;

CSCE 2014 - Programming Foundations Il

46

LINKED LIST BASED

void Queue: :Print()
{
cout << ”“queue: ";
QueueNode *Temp = Head;
while (Temp !'= NULL)
{
cout << Temp->Number << " ";

Temp = Temp->Next;

}
cout << endl;

CSCE 2014 - Programming Foundations Il 47

QUEUES

APPLICATION:
POLYGON FLOOD FILL

POLYGON FLOOD FILL

= Flood fill is an algorithm used in most paint packages to
fill in the interior of a line drawing
= User draws the object outline
= User selects a seed point inside the object
= User selects the desired color
= Algorithm simulates “flooding” to fill region

Queue based flood fill
demo from Wikipedia

CSCE 2014 - Programming Foundations Il

49

POLYGON FLOOD FILL

» Flood fill can be implemented recursively as follows:

= We start at seed location (X,y) in picture
= |If pixel(x,y) is not already colored, we color this pixel and
make four recursive calls to fill in adjacent locations
floodfill(x+1, y);
floodfill(x-1, y);
floodfill(x, y+1);
floodfill(x, y-1);
= Recursion terminates if the pixel is already colored (or if
the location is outside the boundary of the image)

= If the flood fill region is large, this could result in millions of
recursive calls and crash the program

CSCE 2014 - Programming Foundations Il

50

POLYGON FLOOD FILL

void floodfill (int picture[SIZE] [SIZE],

int x, int y, int value)

// Check terminating condition
if ((x >>= 0) && (x < SIZE) &&
>= 0) && < SIZE) && :
(y) (y) Checking we are
(picture[y] [x] !'= value)) inside array bounds

{ before checking pixel

// Paint this pixel

picturely] [x] = value;

CSCE 2014 - Programming Foundations Il 5 1

POLYGON FLOOD FILL

// Visit four neighbors

floodfill (picture, x+1, y, value);
floodfill (picture, x-1, y, value);
floodfill (picture, x, y+1l, wvalue);
floodfill (picture, x, y-1, wvalue);

}
} Four recursive calls to visit

the four adjacent locations

CSCE 2014 - Programming Foundations Il 52

POLYGON FLOOD FILL

= Flood fill can also be implemented using a queue:

We start by inserting the seed location (X,y) on queue
We loop until the queue is empty
We remove(X,y) location of current point

If pixel(x,y) is not already colored, we color this pixel and
save adjacent locations on queue
insert(x+1, y);
insert(x-1, y);
insert(x, y+1);
insert(x, y-1);
We stop filling when the queue is empty
This method is faster and safer than recursive flood fill

CSCE 2014 - Programming Foundations Il

53

POLYGON FLOOD FILL

void floodfill (int picture[SIZE] [SIZE],

int startx, int starty, int value)

// Push start point on queue
Queue q;

g.Insert(startx); q.Insert(starty);

// Loop while queue not empty
while (!'q.IsEmpty())
{

CSCE 2014 - Programming Foundations Il

We insert two values
for (x,y) location

54

POLYGON FLOOD FILL

// Remove next point from queue

int x = 0;
We remove two values to

/ get next (x,y) location

int y = 0;

g.Remove (x) ; g.Remove (y) ;

// Check if pixel is painted
if ((x >= 0) && (x < SIZE) &&

>= 0) && < SIZE) && Checking we are
W) v ! \ inside array bounds

(picture[y] [x] != value)) before checking pixel

CSCE 2014 - Programming Foundations Il 55

POLYGON FLOOD FILL

// Paint this pixel

picturely] [x] = value;

// Insert four neighbors .
g We insert two values

q.Insert(x+l); q.Insert(y); <—— for each of the four
q.Insert(x-1); q.Insert(y):; (x,y) locations

g.Insert(x); gq.Insert(y+l);
q.Insert(x); gq.Insert(y-1);

CSCE 2014 - Programming Foundations Il 56

POLYGON FLOOD FILL

= We showed how flood fill can be implemented using
recursion or using a queue to store pixel locations

= In the recursive floodfill code we visited the four adjacent
(x,y) locations in RLTB order

= In the queue based floodfill code we remove the points in
FIFO order so the fill looks more like paint spreading out

= We could reduce the queue size by checking if each (X,y)
location is in bounds and colored before pushing

= This is a classic space-time tradeoff
= See full solution on class website

CSCE 2014 - Programming Foundations Il 57

QUEUES

APPLICATION:
DISCRETE EVENT SIMULATION

DISCRETE EVENT
SIMULATION

= Queues can be used to model activities where a customer
waits in line for service

= Bank teller windows

= Supermarket checkouts
= (as station pumps

= Amusement park rides

= \We store customer information in a queue when they
arrive and remove them when they get service

= We can modify simulation to maximize throughput or
minimize the number of customers who “give up”

CSCE 2014 - Programming Foundations Il

59

DISCRETE EVENT
SIMULATION

= Simulation setup

= Decide how many queues and servers to use

multiple queues:

— - @ -
— — ©) —
— — ® —

arrive customer queues servers depart

single queue:

—- —

@EO
'

arrive customer queue Servers depart

CSCE 2014 - Programming Foundations I

60

DISCRETE EVENT
SIMULATION

= Simulation setup

= Create models for customer arrivals and service time

= Use a uniform or normal distribution of times between
customer arrivals and times to serve each customer

uniform distribution

« Specify the min and max delay time
between customers in seconds
* delay = min+random() % (max-min+1)

P

delay time

2 min 10 min

normal distribution

» Specify the mean and standard

P deviation of delay time distribution
A delaytime ° US€ methods in <random> to
TR - generate delay values

CSCE 2014 - Programming Foundations Il 6 1

DISCRETE EVENT
SIMULATION

= Simulation algorithm

Create N empty queues
Start virtual clock at zero
Loop for C customers (or until time T is reached)
= Calculate arrival time for next customer
= Calculate service time for this customer
= Update the virtual clock
= Check all queues and remove serviced customers
= Add new customer to the shortest queue

We can calculate min/max/ave customer waiting time
We can simulate customers “giving up” if queue is too long
We can test several models to improve customer service

CSCE 2014 - Programming Foundations Il

62

QUEUES

APPLICATION:
FAIR SCHEDULING

FAIR SCHEDULING

» Queues are used in a number of software applications to
provide fair service

= Queues store information in first in first out (FIFO) order so
they are ideal for “first come first served” applications

= Printer queues:

= Network printer provides shared service to many users
= Print requests are added to the end of printer queue

= Printer removes documents from the printer queue and
prints them in FIFO order

CSCE 2014 - Programming Foundations Il 64

FAIR SCHEDULING

= Communication buffers:

Hub or switch stores incoming data packets in a queue
Packets are processed and transmitted in FIFO order
Queue prevents data loss if there is temporary congestion

= Process scheduling on CPU:

Scheduling queue keeps track of all running tasks on OS
Scheduler will remove task at front of scheduling queue
This task gets a small “time slice™ of the CPU

When time slice is up, the task is “paused” and added to
the end of the schedule queue

Tasks are removed from queue when they terminate

CSCE 2014 - Programming Foundations Il

65

FAIR SCHEDULING

task1 data O
task3 | data @
= ol
data ~how
task2 = _
. | registers
code
o/s data frant end
code T3 | T2 | T1
main memory scheduling queue

CSCE 2014 - Programming Foundations I 66

FAIR SCHEDULING

‘task1 data

= (D
= | B

task3 data

code
-~ - CPU
| data as
task2 L]
- control registers
code now
data ’ frant end
o/s ala \
code T2(T1]|T3
main memory scheduling queue

CSCE 2014 - Programming Foundations I 67

QUEUES

SUMMARY

SUMMARY

= Queues are avery simple abstract data type that store
datain afirst in first out (FIFO) order

= We can only store data using insert
= We can only access data using remove

* Queues can be implemented using arrays or linked lists

= Array implementation is much faster but can get full
= Linked list implementation can never get full but is slower

= Queues can be used to solve wide range of problems

= Polygon flood fill, discrete event simulation, fair scheduling

CSCE 2014 - Programming Foundations Il 69

	Slide 1: queues
	Slide 2: OVERVIEW
	Slide 3: OVERVIEW
	Slide 4: OVERVIEW
	Slide 5: queues
	Slide 6: queue interface
	Slide 7: queue interface
	Slide 8: queue interface
	Slide 9: queues
	Slide 10: Array based
	Slide 11: Array based
	Slide 12: Array based
	Slide 13: Array based
	Slide 14: Array based
	Slide 15: Array based
	Slide 16: Array based
	Slide 17: Array based
	Slide 18: Array based
	Slide 19: Array based
	Slide 20: Array based
	Slide 21: Array based
	Slide 22: Array based
	Slide 23: Array based
	Slide 24: Array based
	Slide 25: Circular queue
	Slide 26: Circular queue
	Slide 27: Circular queue
	Slide 28: Circular queue
	Slide 29: Circular queue
	Slide 30: Circular queue
	Slide 31: Circular queue
	Slide 32: Circular queue
	Slide 33: Linked list based
	Slide 34: Linked list based
	Slide 35: Linked list based
	Slide 36: Linked list based
	Slide 37: Linked list based
	Slide 38: Linked list based
	Slide 39: Linked list based
	Slide 40: Linked list based
	Slide 41: Linked list based
	Slide 42: Linked list based
	Slide 43: Linked list based
	Slide 44: Linked list based
	Slide 45: Linked list based
	Slide 46: Linked list based
	Slide 47: Linked list based
	Slide 48: queues
	Slide 49: Polygon flood fill
	Slide 50: Polygon flood fill
	Slide 51: Polygon flood fill
	Slide 52: Polygon flood fill
	Slide 53: Polygon flood fill
	Slide 54: Polygon flood fill
	Slide 55: Polygon flood fill
	Slide 56: Polygon flood fill
	Slide 57: Polygon flood fill
	Slide 58: queues
	Slide 59: Discrete event simulation
	Slide 60: Discrete event simulation
	Slide 61: Discrete event simulation
	Slide 62: Discrete event simulation
	Slide 63: queues
	Slide 64: Fair scheduling
	Slide 65: Fair scheduling
	Slide 66: Fair scheduling
	Slide 67: Fair scheduling
	Slide 68: queues
	Slide 69: summary

